Centrada En Movimiento Número Par Media


Con el fin de calcular un promedio móvil de l plazo para l un entero par, tenemos que hacer lo que se llama el centrado de la media móvil. Esto se realiza de la siguiente manera: En primer lugar calcular la media móvil simple Siguiente obtener la media móvil centrada en el promedio de los valores adyacentes de los promedios móviles simples: Cuando L2. la media móvil centrada se llama Hanning. Es de la forma A modo de ejemplo, considere calcular el promedio de 4 término de pasar los primeros 10 valores de datos de los datos SASDATA. INTAIR (un conjunto de datos que consta de los números mensuales, en miles, de los pasajeros en los vuelos internacionales de avión para la años 1949 a 1960). Los datos originales son 112.118.132.129.121.135.148.148.136.119. Para obtener los tres primeros términos de la media móvil de 4 término, en primer cálculo Entonces los tres primeros móviles centradas valores medios son Estos son los tres primeros valores de la media móvil de 4 plazo. Joseph D Petruccelli Mar Feb 21 de 14:15:46 EST 1995When el cálculo de un promedio móvil en funcionamiento, la colocación de la media en el tiempo medio plazo tiene sentido en el ejemplo anterior se calculó el promedio de los primeros períodos de tiempo 3 y se coloca al lado de tiempo 3 . podríamos haber colocado el medio en el medio del intervalo de tiempo de tres períodos, es decir, al lado de periodo 2. Esto funciona bien con períodos de tiempo impares, pero no tan bueno para períodos iguales de tiempo. Entonces, ¿dónde podríamos colocar la primera media móvil cuando M 4 Técnicamente, el promedio móvil caería en t 2.5, 3.5. Para evitar este problema que suavizar los MAs utilizando M 2. Así que suavizar los valores suavizados Si tenemos una media de un número par de términos, tenemos que suavizar los valores suavizados La siguiente tabla muestra los resultados con intervalos de confianza M 4.Los lista desplegable permite establecer el nivel de confianza para las bandas de confianza de previsión. Los cuadros de diálogo para modelos de suavizado de temporada incluyen un cuadro de periodos por temporada para establecer el número de períodos en una temporada. La lista de restricciones emergente le permite especificar qué tipo de restricción que desea aplicar en los pesos de suavizado durante el ajuste. Las limitaciones son: amplía el cuadro de diálogo que le permite establecer restricciones sobre los pesos individuales de suavizado. Cada peso suavizado puede ser acotada. Fijo. o no restringida según lo determinado por el ajuste del menú que aparece junto al nombre de pesos. Al introducir valores de ponderaciones fijas o limitadas, los valores pueden ser números reales positivos o negativos. El ejemplo mostrado aquí tiene el peso Nivel () fijado en un valor de 0,3 y el peso de tendencia () delimitada por 0.1 y 0.8. En este caso, se permite que el valor del peso de tendencia para moverse dentro de la gama de 0,1 a 0,8 mientras que el peso de nivel se mantiene a 0,3. Tenga en cuenta que puede especificar todos los pesos de suavizado de antelación mediante el uso de estas restricciones personalizadas. En ese caso, ninguno de los pesos se estima a partir de los datos aunque todavía se calculan previsiones y residuos. Al hacer clic en Estimar. los resultados de la forma aparecen en lugar del cuadro de diálogo. La ecuación de suavizado, L t y t (1) t L -1. se define en términos de un solo peso de suavizado. Este modelo es equivalente a un ARIMA (0, 1, 1) modelo whereMoving promedios y medias móviles centradas Un par de puntos sobre la estacionalidad en un oso de series de tiempo repitiendo, aunque parezcan obvias. Una de ellas es que el término 8220season8221 No necesariamente se refiere a las cuatro estaciones del año que resultan de la inclinación del eje Earth8217s. En el análisis predictivo, 8220season8221 menudo significa precisamente eso, porque muchos de los fenómenos que estudiamos varían junto con la progresión de la primavera hasta el invierno: las ventas de ropa de invierno o verano, la incidencia de ciertas enfermedades muy extendidas, los fenómenos climáticos causados ​​por la ubicación de la corriente en chorro y los cambios en la temperatura del agua en el océano Pacífico oriental, y así sucesivamente. Del mismo modo, los eventos que se producen con regularidad puede actuar como estaciones meteorológicas, a pesar de que sólo tienen una tenue conexión con los solsticios y equinoccios. turnos de ocho horas en hospitales y fábricas a menudo se expresan en la incidencia de la ingesta y el gasto de energía allí, una temporada es de ocho horas de duración y el ciclo de las estaciones todos los días, no todos los años. Las fechas de vencimiento de los impuestos señalan el comienzo de una inundación de dólares en municipales, estatales y arcas federales ahí, la temporada podría ser largos (impuestos sobre la renta personal) un año, seis meses (impuestos de propiedad en muchos estados), trimestral (muchos impuestos a las empresas ), y así. It8217s un poco extraño que tenemos la palabra 8220season8221 para referirse en general al periodo regularmente recurrente de tiempo, pero hay un término general para el período de tiempo durante el cual se produce una vuelta completa de las estaciones. 8220Cycle8221 es posible, pero en análisis y predicción ese término se toma generalmente para referirse a un período de tiempo indeterminado, como un ciclo económico. A falta de un mejor término, I8217ve utiliza period8221 8220encompassing en éste y los siguientes capítulos. Este isn8217t simplemente meditación terminológica. Las formas en las que se identifican las estaciones y el período de tiempo durante el cual las estaciones tienen a su vez real, aunque a menudo de menor importancia, implicaciones para la manera de medir sus efectos. Las secciones siguientes describen cómo algunos analistas varían la forma en que calculan las medias móviles en función de si el número de estaciones es par o impar. El uso de medias móviles En lugar de promedios simples Supongamos que una gran ciudad está considerando la reasignación de su policía de tráfico para abordar mejor la incidencia de la conducción en estado de ebriedad, que la ciudad cree que ha ido en aumento. Hace cuatro semanas, la nueva legislación entró en vigor, la legalización de la posesión y el uso recreativo de la marihuana. Desde entonces, el número diario de detenciones de tráfico por DWI parece ser una tendencia al alza. Para complicar las cosas es el hecho de que el número de detenciones parece pico de los viernes y los sábados. Para ayudar a planificar las necesidades de personal en el futuro, you8217d gustaría de previsión de cualquier tendencia subyacente that8217s de haberse establecido. También You8217d gustaría vez que el despliegue de sus recursos para tener en cuenta la estacionalidad relacionada fin de semana-that8217s teniendo lugar. Figura 5.9 tiene los datos relevantes que tiene que trabajar con ellos. Figura 5.9 Con este conjunto de datos, cada día de la semana constituye una temporada. Incluso con sólo echando un vistazo a la gráfica en la Figura 5.9. se puede decir que la tendencia del número de detenciones diarias es hacia arriba. You8217ll tiene que planificar para ampliar el número de agentes de tráfico, y la esperanza de que los niveles de tendencia fuera pronto. Además, los datos corroboran la idea de que más detenciones se producen habitualmente los viernes y sábados, por lo que su asignación de recursos para hacer frente a las necesidades de esos picos. Pero hay que cuantificar la tendencia subyacente, para determinar cuántos de policía adicional you8217ll tiene que llevar adelante. También es necesario cuantificar el tamaño esperado de los picos de fin de semana, para determinar cuántos policías adicionales que necesita ver para los conductores erráticos en esos días. El problema es que hasta el momento se don8217t sabe cuánto del incremento diario se debe a la tendencia y qué parte se debe a que el efecto de fin de semana. Puede empezar por eliminar la tendencia de la serie temporal. Al principio de este capítulo, en promedios estacionales 8220Simple, 8221 viste un ejemplo de cómo eliminar la tendencia de una serie temporal con el fin de aislar los efectos estacionales utilizando el método de los promedios simples. En esta sección you8217ll ver cómo hacerlo usando mover averages8212very probable es que el enfoque de movimiento promedios se utiliza con mayor frecuencia en el análisis predictivo que es el enfoque basado en los promedios simples. Hay varias razones para la mayor popularidad de los promedios, entre los que se mueve, que el enfoque de movimiento promedios no le pide a colapsar sus datos en el proceso de cuantificación de una tendencia. Recordemos que el ejemplo anterior ha obligado a colapsar promedios trimestrales de las medias anuales, calcular una tendencia anual, y luego distribuir una cuarta parte de la tendencia anual a través de cada trimestre del año. Se necesitaba ese paso con el fin de eliminar la tendencia de los efectos estacionales. En contraste, el enfoque de movimiento promedios le permite eliminar la tendencia de la serie de tiempo sin tener que recurrir a ese tipo de maquinación. La figura 5.10 se muestra cómo el enfoque de movimiento promedios funciona en el presente ejemplo. Figura 5.10 El promedio móvil en el segundo gráfico aclara la tendencia subyacente. Figura 5.10 agrega una columna de media móvil, y una columna para seasonals específicos. al conjunto de datos en la Figura 5.9. Ambas adiciones requieren una cierta discusión. Los picos de las detenciones que se realizan los fines de semana le da razones para creer que you8217re trabajar con las estaciones que se repiten una vez cada semana. Por lo tanto, empezar por conseguir la media de la que abarca period8212that es decir, las primeras siete temporadas, de lunes a domingo. La fórmula para la media en la celda D5, la primera media móvil disponible, es la siguiente: Esta fórmula es copiado y pegado a lo largo de D29 celular, por lo que tiene 25 medias móviles basado en 25 carreras de siete días consecutivos. Cuenta de que con el fin de mostrar la primera y las últimas observaciones de la serie temporal, he escondido filas 10 a 17. Se puede mostrar que, si lo desea, en este chapter8217s libro, disponible en el sitio web publisher8217s. Hacer una selección múltiple de filas visibles 9 y 18, haga clic en uno de sus jefes de la fila, y elija en Mostrar en el menú contextual. Cuando se oculta un filas worksheet8217s, como I8217ve hizo en la Figura 5.10. cualquier dato trazado en las filas ocultas también se oculta en el gráfico. Las etiquetas del eje x sólo identifican los puntos de datos que aparecen en el gráfico. Debido a que cada media móvil en la Figura 5.10 abarca siete días, ninguna media móvil está emparejado con las tres o tres definitiva primeras observaciones reales. Copiar y pegar la fórmula en la celda D5 un día a la celda D4 que se queda sin observations8212there no es una observación registrada en la celda C1. Del mismo modo, no hay media móvil registrado por debajo de D29 celular. Copiar y pegar la fórmula en D29 en D30 se requieren una observación en la celda C33, y ninguna observación está disponible para el día que representaría celular. Sería posible, por supuesto, para acortar la longitud de la media móvil a, digamos, cinco en lugar de siete. Al hacerlo significaría que las fórmulas de promedios móviles en la figura 5.10 podrían comenzar en la celda D4 en lugar de D5. Sin embargo, en este tipo de análisis, desea que la longitud de la media móvil para igualar el número de estaciones: siete días a la semana para los eventos que se repiten cada semana implica una media móvil de longitud de siete y cuatro trimestres en un año para los eventos que repetiría anualmente implica un promedio móvil de cuatro longitud. En una línea similar, por lo general, cuantificar los efectos estacionales, de tal manera que se suman a cero dentro del período de tiempo que abarca. Como se vio en esta primera sección chapter8217s, en promedios simples, esto se hace mediante el cálculo del promedio de (digamos) los cuatro trimestres en un año, y luego restando la media del año de cada una cifra trimestral. Al hacerlo se garantiza que el total de los efectos estacionales es cero. A su vez, that8217s útil porque pone a los efectos estacionales en un efecto común de verano footing8212a 11 está tan lejos de la media como un efecto de invierno de 821111. Si desea hacer un promedio de cinco temporadas en lugar de siete para obtener su media móvil, you8217re mejor de la búsqueda de un fenómeno que se repite cada cinco temporadas en lugar de cada siete. Sin embargo, cuando se toma el promedio de los efectos estacionales, más adelante en el proceso, los promedios son poco probable que su suma sea igual a cero. It8217s necesaria en ese momento para volver a calibrar o normalizar. los promedios de modo que su suma es cero. Cuando that8217s hecho, los promedios estacionales promediados expresan el efecto en un periodo de tiempo de pertenencia a una estación en particular. Una vez normalizada, los promedios estacionales se denominan los índices estacionales que este capítulo ya se ha mencionado varias veces. You8217ll ver cómo funciona adelante en este capítulo, en 8220Detrending la Serie con Moving Averages.8221 Comprender seasonals específicos Figura 5.10 también muestra lo que se llama seasonals específicas de la columna E. Son what8217s después de restar la media móvil de la observación real. Para tener una idea de lo que los seasonals específicos representan, tenga en cuenta el promedio móvil en la celda D5. Es la media de las observaciones en C2: C8. Las desviaciones de cada observación de la media móvil (por ejemplo, C2 8211 D5) están garantizados para sumar a zero8212that8217s una característica de un promedio. Por lo tanto, cada desviación expresa el efecto de estar asociada a ese día en particular en esa semana en particular. It8217s un específico estacional, then8212specific porque la desviación se aplica a ese Lunes Martes o particular, y así sucesivamente, y de temporada porque en este ejemplo we8217re tratamiento de cada día como si se tratara de una temporada en el periodo que abarca de una semana. Debido a que cada uno mide específicos de temporada el efecto de estar en esa temporada vis-224-vis la media móvil para ese grupo de (aquí) siete temporadas, que posteriormente puede promediar los seasonals específicos para una estación en particular (por ejemplo, todos los viernes en su series de tiempo) para estimar que en general season8217s, no específica, efecto. Ese medio no está influida por una tendencia subyacente de la serie de tiempo, ya que cada temporada específica expresa una desviación de su propia media móvil particular. La alineación de los Medias Móviles There8217s también la cuestión de la alineación de las medias móviles con el conjunto de datos original. En la Figura 5.10. He alineado cada media móvil con el punto medio de la gama de observaciones que incluye. Así, por ejemplo, la fórmula en la celda D5 promedios las observaciones en C2: C8, y se han alineado con el cuarto de observación, el punto medio del rango promedio, colocándolo en la fila 5. Esta disposición se denomina un medio centrado en movimiento . y muchos analistas prefieren alinear cada media móvil con el punto medio de las observaciones que el promedio es. Tenga en cuenta que, en este contexto, se refiere a 8220midpoint8221 medio de un intervalo de tiempo: El jueves es el punto medio de lunes a domingo. No se refiere a la mediana de los valores observados, aunque por supuesto que podría funcionar de esa manera en la práctica. Otro enfoque es la media móvil de arrastre. En ese caso, cada media móvil está alineada con la observación final de que averages8212and por lo tanto, va a la zaga sus argumentos. Esto es a menudo la disposición preferida si desea utilizar una media móvil como una previsión, como se hace con alisamiento exponencial, debido a que su media móvil final ocurre coincidente con la última observación disponible. Medias móviles centradas con números pares de estaciones Nos suelen adoptar un procedimiento especial cuando el número de estaciones es aún más que extraño. That8217s el típico estado de cosas: No tienden a ser un número par de temporadas en el periodo que abarca de estaciones típicas tales como meses, trimestres y períodos cuatrienales (para las elecciones). La dificultad con un número par de estaciones es que no hay punto medio. Dos no es el punto medio de una serie a partir de 1 y terminando a las 4, y tampoco lo es 3 si puede decirse que tiene una, su punto medio es 2,5. Seis no es el punto medio de 1 a 12, y tampoco lo es su punto medio 7 puramente teórico es 6,5. Para actuar como si existe un punto medio, es necesario añadir una capa de un promedio alto de las medias móviles. Véase la Figura 5.11. Figura 5.11 Excel ofrece varias maneras de calcular una media móvil centrada. La idea detrás de este enfoque para conseguir un movimiento that8217s promedio centrados en un punto medio existente, cuando there8217s un número par de temporadas, es tirar de ese punto medio hacia adelante a la mitad de una temporada. Se calcula una media móvil que se centra en, por ejemplo, el tercer punto en el tiempo si cinco temporadas en lugar de cuatro constituían una vuelta completa del calendario. That8217s hace multiplicando los dos medias móviles consecutivos y adecuándolas. Así, en la figura 5.11. there8217s un promedio móvil en la celda E6 que promedia los valores en D3: D9. Debido a que hay cuatro valores estacionales en D3: D9, el promedio móvil de E6 está pensado como centro en la temporada imaginaria 2,5, medio punto por debajo de la primera temporada candidato disponible, 3. (estaciones 1 y 2 no están disponibles como puntos medios para la falta de datos a media antes de la temporada 1.) Tenga en cuenta, sin embargo, que la media móvil de las medias E8 celular en los valores D5: D11, el segundo hasta el quinto de la serie temporal. Esta media se centra en (imaginario) en el punto 3.5, un período completo por delante de la media centrada a 2,5. Al promediar las dos medias móviles, por lo que el pensamiento va, se puede tirar el punto central del primer avance promedio móvil en medio punto, de 2,5 a 3. That8217s lo que los promedios en la columna F de la figura 5.11 hacen. Cell F7 proporciona la media de las medias móviles de E6 y E8. Y el promedio en F7 está alineado con el tercer punto de datos en la serie de tiempo original, en la celda D7, hacer hincapié en que el promedio se centra en esa temporada. Si expande la fórmula en la celda F7, así como las medias móviles en las celdas E6 y E8, you8217ll ver que resulta ser un promedio ponderado de los primeros cinco valores de la serie temporal, con el primer y el quinto valor dado un peso de 1, y el segundo a cuarto valores dados un peso de 2. Esto nos lleva a una forma más rápida y sencilla para calcular un promedio móvil centrado con un número par de temporadas. Todavía en la figura 5.11. los pesos se almacenan en la gama H3: H11. Esta fórmula devuelve el promedio primera móviles centradas, en I7 celular: Esa fórmula devuelve 13.75. que es idéntico al valor calculado por la fórmula de doble medio en la celda F7. Haciendo referencia a los pesos absolutos, por medio de los signos de dólar en H3: H11. puede copiar la fórmula y pegarla hacia abajo tanto como sea necesario para obtener el resto de las medias móviles centradas. Eliminar la tendencia de la serie con promedios móviles Cuando haya restados los promedios móviles de las observaciones originales para obtener los seasonals específicos, que haya eliminado la tendencia subyacente de la serie. What8217s que quedan en los seasonals específico es normalmente una serie estacionaria, horizontal con dos efectos que causan los seasonals específicos apartarse de una línea absolutamente recta: los efectos estacionales y los errores aleatorios en las observaciones originales. La figura 5.12 muestra los resultados para este ejemplo. Figura 5.12 Los efectos estacionales específicas para el viernes y sábado quedar claro en la serie sin tendencia. El gráfico superior de la Figura 5.12 muestra las observaciones diarias originales. Tanto la tendencia general al alza y el fin de semana picos de temporada son claros. El gráfico inferior muestra los seasonals específicos: el resultado de eliminar la tendencia de la serie original con un filtro de media móvil, como se ha descrito anteriormente en 8220Understanding Seasonals.8221 específico Se puede ver que la serie sin tendencia ahora es prácticamente horizontal (una línea de tendencia lineal para los seasonals específicos tiene una ligera tendencia a la baja), pero los picos estacionales de viernes y sábado son todavía en su lugar. El siguiente paso es ir más allá de los seasonals específicas para los índices estacionales. Véase la Figura 5.13. Figura 5.13 Los efectos específicos seasonals se promedian primero y luego normalizado para alcanzar los índices estacionales. En la figura 5.13. los seasonals específicas de la columna E se reorganizan en forma tabular se muestra en la gama H4: N7. El propósito es simplemente para que sea más fácil de calcular los promedios estacionales. Dichas medias se muestran en H11: N11. Sin embargo, las cifras en H11: N11 son promedios y no desviaciones de un promedio, y por lo tanto can8217t esperan que suman cero. Todavía tenemos que ajustarlos de manera que expresen las desviaciones de una gran media. Ese gran media aparece en la celda N13, y es el promedio de los promedios estacionales. Podemos llegar a los índices estacionales restando la media general en la N13 de cada uno de los promedios estacionales. El resultado está en el rango H17: N17. Estos índices estacionales ya no son específicos de una media móvil particular, tal como es el caso de los seasonals específicas de la columna E. Debido they8217re basado en un promedio de cada instancia de una estación dada, expresan el efecto medio de una estación dada a través de la cuatro semanas de la serie temporal. Por otra parte, se trata de medidas de un season8217s8212here, un day8217s8212effect sobre las detenciones de tráfico vis-224-vis el promedio para un período de siete días. Ahora podemos usar esos índices estacionales para desestacionalizar la serie. We8217ll utilizar la serie desestacionalizada para obtener pronósticos por medio de regresión lineal o método de suavizado Holt8217s serie tendido (discutido en el capítulo 4). A continuación, sólo tenemos que añadir los índices estacionales de nuevo en las previsiones de reseasonalize ellos. Todo esto aparece en la Figura 5.14. Figura 5.14 Una vez que tenga los índices estacionales, los toques finales que se aplican aquí son los mismos que en el método de promedios simples. Los pasos que se ilustran en la Figura 5.14 son en gran parte la misma que las de las figuras 5.6 y 5.7. se discute en las siguientes secciones. Desestacionalizar las observaciones sustraer los índices estacionales de las observaciones originales para desestacionalizar los datos. Usted puede hacer esto como se muestra en la Figura 5.14. en el que las observaciones originales y los índices estacionales están dispuestos como dos listas que comienzan en la misma fila, las columnas C y F. Esta disposición hace que sea un poco más fácil de estructurar los cálculos. También se puede hacer la resta como se muestra en la Figura 5.6. en el que las observaciones originales trimestrales (C12: F16), los índices trimestrales (C8: F8), y los resultados desestacionalizados (C20: F24) se muestran en un formato tabular. Esta disposición hace que sea un poco más fácil centrarse en los índices estacionales y las publicaciones trimestrales deseasoned. Pronóstico de las observaciones desestacionalizados En la Figura 5.14. las observaciones desestacionalizados están en la columna H, y en la figura 5.7 they8217re en la columna C. Independientemente de si se desea utilizar un método de regresión o un enfoque suavizado con el pronóstico, it8217s posible para organizar las observaciones desestacionalizados en una lista de una sola columna. En la figura 5.14. las previsiones son en la columna J. La siguiente fórmula de matriz se introduce en la gama J2: J32. Al principio de este capítulo, me señaló que si se omite el argumento valores de x de la tendencia () function8217s argumentos, Excel proporciona los valores predeterminados 1. 2. n. donde n es el número de valores de y. En la fórmula que acabamos de dar, H2: H32 contiene 31 valores de y. Debido a que el argumento que normalmente contiene los valores de x se encuentra, Excel proporciona los valores predeterminados 1. 2. 31. Esos son los valores que se desea utilizar de todos modos, en la columna B, así como la fórmula dada es equivalente a la tendencia (H2: H32, B2: B32). Y that8217s la estructura utilizada en D5: D24 de la Figura 5.7: Hacer el pronóstico del One-Step-Ahead Hasta ahora usted ha arreglado para las previsiones de la serie desestacionalizada tiempo desde t 1 a t 31 en la Figura 5.14. y desde t1 a través de T 20 en la Figura 5.7. Estas previsiones constituyen información útil para diversos fines, incluyendo la evaluación de la exactitud de los pronósticos por medio de un análisis de RMSE. Sin embargo, su objetivo principal es la previsión de al menos el próximo período de tiempo, hasta ahora no observada. Para conseguir esto, se podía primer pronóstico de la función ESTIMACION. LINEAL () TENDENCIA () o si you8217re mediante regresión, o de la fórmula de suavizado exponencial si you8217re utilizando el método Holt8217s. A continuación, puede añadir el índice de estacionalidad asociada a la regresión o alisar el pronóstico, para obtener un pronóstico que incluye tanto la tendencia y el efecto estacional. En la figura 5.14. se obtiene la regresión previsto en J33 celular con esta fórmula: En esta fórmula, los valores de y en H2: H32 son los mismos que en la otra tendencia () fórmulas en la columna J. Así son los (por defecto) de 1-valores x a través de 32. Ahora, sin embargo, debe proporcionar un nuevo valor x como el tercer argumento function8217s, que le dice TENDENCIA () para buscar en la celda B33. It8217s 32. el siguiente valor de t. Y Excel devuelve el valor 156.3 J33 en la célula. La función de tendencia () en J33 celular está diciendo Excel, en efecto, 8220Calculate la ecuación de regresión para los valores de H2: H32 retrocedido en los valores de t 1 a 31. Aplicar la ecuación de regresión para el nuevo valor x de 32 y devolver el result.8221 You8217ll encontrar el mismo enfoque adoptado en la celda D25 de la Figura 5.7. donde la fórmula para obtener la previsión de un paso por delante es la siguiente: Adición de los índices estacionales Volver En El paso final es reseasonalize las previsiones mediante la adición de los índices estacionales para los pronósticos de tendencia, la inversión de lo que hizo cuatro pasos hacia atrás cuando se sustraerá la índices de las observaciones originales. Esto se realiza en la columna F de la figura 5.7 y la columna K en la figura 5.14. Don8217t se olvide de añadir el índice estacional apropiado para la previsión de un paso por delante, con los resultados mostrados en la celda F25 en la Figura 5.7 y en K33 celular en la figura 5.14. (I8217ve sombreado las celdas de un solo paso-por delante, tanto en la Figura 5.7 y Figura 5.14 para resaltar los pronósticos.) Puede encontrar las cartas de tres representaciones de los datos de las detenciones de tráfico en la Figura 5.15. la serie desestacionalizada, la previsión lineal a partir de los datos desestacionalizados, y las previsiones reseasonalized. Tenga en cuenta que las previsiones incorporan tanto la tendencia general de los datos originales y sus picos viernes / sábado. Figura 5.15 Trazando el forecasts.6.2 Medias móviles ma 40 elecsales, orden 5 41 En la segunda columna de esta tabla, se muestra un promedio móvil de orden 5, que proporciona una estimación de la tendencia-ciclo. El primer valor en esta columna es el promedio de los primeros cinco observaciones (1989-1993), el segundo valor de la columna 5-MA es el promedio de los valores de 1990-1994 y así sucesivamente. Cada valor de la columna 5-MA es el promedio de las observaciones en el plazo de cinco años centrado en el año correspondiente. No hay valores para los dos primeros años o los últimos dos años debido a que no tiene dos observaciones a cada lado. En la fórmula anterior, en la columna 5-MA contiene los valores de sombrero con k2. Para ver lo que la estimación de la tendencia-ciclo parece, representamos gráficamente junto con los datos originales en la Figura 6.7. parcela 40, elecsales principal salesquot electricidad quotResidential, quotGWhquot ylab. xlab quotYearquot 41 líneas de 40 ma 40 elecsales, 5 41. col quotredquot 41 Observe cómo la tendencia (en rojo) es más suave que los datos originales y captura el movimiento principal de la serie de tiempo sin tener todas las fluctuaciones de menor importancia. El método de promedio móvil no permite estimaciones de T, donde t es cerca de los extremos de la serie de ahí la línea roja no se extiende a los bordes de la gráfica de cualquier lado. Más adelante vamos a utilizar métodos más sofisticados de la estimación de la tendencia-ciclo, que sí permiten estimaciones cerca de los puntos finales. El orden de la media móvil determina la suavidad de la estimación de la tendencia-ciclo. En general, un orden más grande significa una curva más suave. El siguiente gráfico muestra el efecto de cambiar el orden de la media móvil de los datos de venta de electricidad residenciales. medias móviles simples como estos son generalmente de orden impar (por ejemplo, 3, 5, 7, etc.) Esto es por lo que son simétricas: en una media móvil de m2k1 orden, hay k observaciones anteriores, K posteriores observaciones y la observación media que se promedian. Pero si m fue aún, ya no sería simétrica. promedios de medias móviles en movimiento Es posible aplicar una media móvil de una media móvil. Una razón para hacer esto es hacer un movimiento de orden par simétrico promedio. Por ejemplo, podríamos tener un promedio móvil de orden 4 y, a continuación, aplicar otra media móvil de orden 2 con los resultados. En la Tabla 6.2, esto se ha hecho durante los primeros años de los datos de producción de cerveza trimestrales australianos. beer2 ntegrada ventana de 40 ausbeer, inicia 1992 41 ma4 ma ntegrada 40 beer2, orden 4. Centro ma FALSO 41 ma2x4 ntegrada 40 beer2, orden 4. Centro VERDADERO 41 La notación 2times4-MA en la última columna significa un 4-MA seguido de un 2-MA. Los valores en la última columna se obtienen tomando una media móvil de orden 2 de los valores en la columna anterior. Por ejemplo, los primeros dos valores en la columna 4-MA son 451,2 (443,410,420,532) / 4 y 448,8 (410,420,532,433) / 4. El primer valor de la columna 2times4-MA es el promedio de estos dos: 450,0 (451.2448.8) / 2. Cuando un 2-MA deduce una media móvil de orden par (por ejemplo, 4), se llama una media móvil centrada de orden 4. Esto se debe a que los resultados son ahora simétrica. Para ver que este es el caso, podemos escribir la 2times4-MA de la siguiente manera: comenzar frac amp sombrero Bigfrac (S S S S) frac (S S S S) Gran amplificador frac y frac14y frac14y frac14y frac18y. terminan Ahora es un promedio ponderado de las observaciones, pero es simétrica. Otras combinaciones de medias móviles son también posibles. Por ejemplo, un 3times3-MA se utilizan a menudo, y consta de un promedio móvil de orden 3, seguido de otra media móvil de orden 3. En general, un orden par MA debe ser seguido por una aún MA fin de que sea simétrica. Del mismo modo, un MA orden impar debe ser seguido por un MA orden impar. La estimación de la tendencia-ciclo con datos estacionales El uso más común de las medias móviles centradas en la estimación de la tendencia-ciclo a partir de datos de temporada. Considere la 2times4-MA: frac y sombrero de frac14y frac14y frac14y frac18y. Cuando se aplica a los datos trimestrales, cada trimestre del año se da la misma importancia como los primeros y últimos términos se aplican al mismo trimestre en años consecutivos. En consecuencia, la variación estacional serán promediados y los valores resultantes de sombrero t tendrá poca o ninguna variación estacional restante. Un efecto similar se puede obtener usando un 8-MA 2times o una 2times 12-MA. En general, un 2times m-MA es equivalente a una media móvil ponderada de M1 con el fin de tomar todas las observaciones peso 1 / m a excepción de los primeros y últimos términos que tienen pesos 1 / (2m). Así que si el período de temporada es uniforme y de orden m, utilizar un 2times m-MA para estimar la tendencia-ciclo. Si el período de temporada es impar y de orden m, utilizar un m-MA para estimar el ciclo de tendencia. En particular, un 2times 12-MA se puede usar para estimar la tendencia-ciclo de datos mensuales y un 7-MA se puede usar para estimar la tendencia-ciclo de datos diarios. Otras opciones para el fin de la EM se suele dar lugar a estimaciones de tendencia-ciclo están contaminados por la estacionalidad en los datos. Ejemplo 6.2 El equipo eléctrico de fabricación Figura 6.9 muestra una 2times12-MA aplica al índice de pedidos de equipos eléctricos. Observe que la línea suave no muestra estacionalidad es casi la misma que la tendencia-ciclo se muestra en la Figura 6.2, que se calcula utilizando un método mucho más sofisticado que las medias móviles. Cualquier otra opción para el fin de la media móvil (excepto los días 24, 36, etc.) habría dado lugar a una línea suave que muestra algunas fluctuaciones estacionales. parcela 40 elecequip, ylab órdenes quotNew indexquot. quotgrayquot col, la principal la fabricación de equipos quotElectrical (zona euro) quot 41 líneas de 40 ma 40 elecequip, orden 12 41. col quotredquot 41 promedios móviles ponderados combinaciones de medias móviles resultar en promedios móviles ponderados. Por ejemplo, el 2x4-MA se discutió anteriormente es equivalente a una ponderada 5-MA con pesos dados por el frac, frac, frac, frac, frac. En general, un ponderada m-MA se puede escribir como sombrero t suma k aj y, donde k (m-1) / 2 y los pesos se dan por una, puntos, ak. Es importante que todos los pesos suma a uno y que son tan simétrica que un aj. El simple m-MA es un caso especial donde todos los pesos son iguales a 1 / m. Una de las principales ventajas de los promedios móviles ponderados es que con ellos se obtienen una estimación más suave de la tendencia-ciclo. En lugar de observaciones entrar y salir del cálculo en peso, sus pesos se aumentan lentamente y luego disminuyó lentamente que resulta en una curva suave. Algunos conjuntos específicos de pesos son ampliamente utilizados. Algunas de ellas se dan en la Tabla 6.3.

Comments

Popular posts from this blog

Comisiones De Los Agentes De La Divisa Críticas

Opciones Binarias 0x67

Más Rápido Servicio De Noticias De La Divisa